

16 Terry Road, Eastwood – Childcare Centre

Transport Impact Assessment

Prepared for:

The Trustee for Y & Z TRD Trust

22 January 2024

The Transport Planning Partnership

16 Terry Road, Eastwood – Childcare Centre Transport Impact Assessment

Client: The Trustee for Y & Z TRD Trust

Version: V02

Date: 22 January 2024

TTPP Reference: 23344

Quality Record

Version	Date	Prepared by	Reviewed by	Approved by	Signature
V01	15/01/24	Charbel Hanna	Ashish Modessa	Jason Rudd	DRAFT
V02	22/01/24	Charbel Hanna	Ashish Modessa	Jason Rudd	Jon River

Table of Contents

1	Intro	oduction1
	1.1	Background1
	1.2	Structure of the Report1
	1.3	References1
2	Exist	ting Conditions2
	2.1	Site Context
	2.2	Surrounding Road Network
	2.3	Public Transport Infrastructure
	2.4	Pedestrian and Cycling Infrastructure4
3	Prop	posed Development5
4	Park	king Assessment
	4.1	Car Parking6
	4.2	Accessible Parking7
	4.3	Motorcycle Parking7
	4.4	Bicycle Parking7
	4.5	Loading and Servicing7
	4.6	Parking Layout
5	Traf	fic Assessment
	5.1	Existing Traffic Volumes9
	5.2	Traffic Generation
	5.3	Traffic Distribution and Assignment9
	5.4	Traffic Impact12
		5.4.1 Existing Conditions
		5.4.2 Post Development Conditions
6	Sum	nmary and Conclusion14

Tables

Table 4.1: DCP Car Parking Requirements	. 6
Table 5.1: Traffic Generation	. 9
Table 5.2: Level of Service Criteria for Intersection Operation	12
Table 5.3: Existing Intersection Operation	13
Table 5.4: Existing + Development Peak Hour Traffic Modelling Results	13

Figures

Figure 2.1: Subject Site and the Surrounding Context	. 2
Figure 2.2: Subject Site	. 2
Figure 2.3: Bus Stop Locations	. 3
Figure 2.4: Bus Route Map - Route 545	. 4
Figure 3.1: Proposed Ground Floor Layout	. 5
Figure 4.1: Updated TfNSW Childcare Parking Rates (TEF Consulting, 2015)	. 6
Figure 4.2: Proposed Car Park Layout	. 8
Figure 5.1: Existing Traffic Volumes – AM Peak Hour	10
Figure 5.2: Existing Traffic Volumes – PM Peak Hour	10
Figure 5.3: Development Traffic Volumes – AM Peak Hour	11
Figure 5.4: Development Traffic Volumes – PM Peak Hour	11

APPENDICES

- A. ARCHITECTURAL PLANS
- **B.** SITE LAYOUT REVIEW
- C. TRAFFIC SURVEYS
- D. SIDRA OUTPUTS

1 Introduction

1.1 Background

The Trustee for Y & Z TRD Trust is seeking to develop a new childcare centre at 16 Terry Road, Eastwood with capacity for 126 children. The facility will comprise six rooms, outdoor play areas and basement car parking. Access to the subject site is proposed via Terry Road.

A Development Application (DA) is to be lodged with the City of Ryde Council (Council) to seek approval for the proposed development.

The Transport Planning Partnership (TTPP) has prepared this Transport Impact Assessment (TIA) to accompany the DA and assess the traffic and parking implications of the proposed development for submission to Council.

1.2 Structure of the Report

The layout of the report is set out as follows:

- Chapter 2 discusses the existing conditions including a description of the site.
- Chapter 3 provides a brief description of the proposed development.
- Chapter 4 assesses the parking implications and requirements.
- Chapter 5 assesses the traffic generation and its implications.
- Chapter 6 presents the conclusion of the assessment.

1.3 References

In preparing this report, reference has been made, but is not limited to, the following documents:

- City of Ryde Development Control Plan (DCP) 2014
- City of Ryde Local Environmental Plan (LEP) 2014
- Australian Standard/ New Zealand Standard, Parking Facilities, Part 1: Off-Street Car Parking AS/NZS2890.1:2004
- Australian Standard, Parking Facilities, Part 3: Bicycle Parking AS2890.3:2015
- Australian Standard, Parking Facilities, Part 6: Off-Street Parking for People with Disabilities AS2890.6:2022
- Building Construction Code 2022 Part D4 Access for people with a disability
- plans for the proposed development prepared by Janssen Designs
- other documents and data as referenced in this report.

2 Existing Conditions

2.1 Site Context

The subject site is located at 16 Terry Road, Eastwood within the City of Ryde Local Government Area. The site has a single frontage of about 24 metres to Terry Road to the north and is in a low-density residential area. The site is currently occupied by a single dwelling. The site location and surrounds are shown in Figure 2.1 and Figure 2.2.

Figure 2.1: Subject Site and the Surrounding Context

Basemap source: Google Maps

Figure 2.2: Subject Site

Basemap Source: Nearmap, last accessed 24/11/2023.

2.2 Surrounding Road Network

Terry Road is a two-lane, two-way road, aligned in an east-west direction that connects the major arterial Marsden Road to Midson Road. It has a posted speed limit of 50km/h and unrestricted parking is permitted on both sides. **Spencer Street** is a two-way local road aligned in the north-south direction. Spencer Street intersects with Terry Road via a priority-controlled T-intersection located adjacent to the site. It has a 50km/h area speed limit and unrestricted parking is permitted on both sides.

2.3 Public Transport Infrastructure

Bus stops are located on both sides of Terry Road. The closest bus stops in each direction are located within 50 metres of the site towards the east, as shown in Figure 2.3.

Figure 2.3: Bus Stop Locations

Basemap Source: Google Maps, dated 24/11/2023.

The bus stops are serviced by bus route 545 which links Parramatta to Macquarie Park via Telopea and Eastwood as shown in Figure 2.4. The average service frequency is approximately 15 minutes on weekdays, every 20 minutes on Saturdays, and every 30 minutes on Sundays and public holidays.

The closest train station to the subject site is Eastwood train station, which is located approximately one kilometre (15-minute walk) away. Eastwood train station is serviced by T9 – Northern Line and the average service frequency is 15 minutes.

Source: Transport NSW, last accessed on 24/11/2023.

2.4 Pedestrian and Cycling Infrastructure

Footpaths are provided on both sides of Terry Road and on at least one side of other nearby local roads.

On road bicycle lanes are provided along Terry Road, shared with kerbside parking lanes. Along with a combination of cycle friendly roads, the bicycle route providing east-west connection between Dundas Valley and Eastwood Town Centre.

3 Proposed Development

The proposal involves the demolition of the existing standalone residential dwelling on the site and construction of a two-storey childcare centre development with basement car parking.

The childcare is proposed to accommodate 126 children, with a breakdown by age group provided below:

- 0-2 years old 16 children
- 2-3 years old 20 children
- 3-5 years old 90 children.

There is a requirement for at least 17 staff to be on site at any one time.

The basement car park accommodates 24 car parking spaces, with vehicular and pedestrian access provided via Terry Road. Kerbside waste collection is proposed with a separate path provided between the site frontage and bin storage room on the west side of the site for bins to be wheeled out for collection.

The proposed ground floor layout is shown in Figure 3.1, with the architectural plans provided in Appendix A.

Figure 3.1: Proposed Ground Floor Layout

Source: Janssen Design - drawing no. 10258-A007 dated 1 September 2023

4 Parking Assessment

4.1 Car Parking

The City of Ryde DCP 2014 stipulates car parking requirements for different land uses. According to Ryde DCP 2014, a childcare centre is required to provide a minimum of one space per two staff employed and one space per eight children.

The car parking requirements based on Ryde DCP 2014 is presented in Table 4.1.

Component	Yield	DCP Parking Rates	DCP Required Parking
Staff	17	1 space per 2 staff	9 spaces
Children	126	1 space per 8 children	16 spaces
		TOTAL	25 spaces

Table 4.1: DCP Car Parking Requirements

Based on the assessment above, the proposed development requires a minimum of 25 car parking spaces including 9 staff and 16 visitor spaces to comply with Ryde DCP 2014.

The proposed development includes 24 car spaces, including 10 staff spaces and 14 visitor spaces. The provision is considered appropriate when accounting for the sites proximity to bus stops that are serviced by a bus route with 15-minute frequency linking the site to Parramatta, Eastwood and Macquarie Park. In addition, the site is in a primarily low-density area with unrestricted on-street parking and limited competing demand based on observations of current demand. Therefore, any minor additional demand generated by the site that would occur during the drop-off and pick-up peak periods will have limited impacts on surroundings users.

Furthermore, it is noted that Transport for NSW commissioned updated traffic generation and parking surveys¹ in 2015 that illustrated that car parking demand reduces as the childcare centre size (i.e. number of children) increases, as extracted in Figure 4.1. The rates include both visitor/parent and staff car parking. With the proposal being for a larger centre than surveyed by Transport for NSW, anticipated demand could theoretically be one space per six children if not lower.

Figure 4.1: Updated TfNSW Childcare Parking Rates (TEF Consulting, 2015)

It is noted that the current rate of parking provision in the RMS (2002) Guide, based on 1992 data, is 1 parking space per 4 children. For comparison with this rate, the Peak Parking Accumulation formula from Table 4.2 was used for a range of numbers of children places. The resulting calculations indicate the following average rates:

- Centres with 20 to 35 children 1 space per 4 children
- Centres with 40 to 65 children 1 space per 5 children
- Centres with 70 to 100 children 1 space per 6 children

¹TEF Consulting, Roads and Maritime Services, Trip Generation Surveys – Child Care Centre, August 2015

4.2 Accessible Parking

The National Construction Code 2022 (NCC 2022) specifies accessible parking requirements for various developments. Specifically, for Class 9b buildings, which includes childcare centres, a provision of one accessible space per 100 parking spaces or part thereof is required. The development provides one accessible space and therefore satisfies this accessible parking requirement.

4.3 Motorcycle Parking

Ryde DCP 2014 does not stipulate any motorcycle parking requirements for childcare centres. No motorcycle parking is proposed.

4.4 Bicycle Parking

Ryde DCP 2014 states that where the floor space exceeds 600 square metres gross floor area, bicycle parking is to be provided at a rate of 10 percent of the required car spaces. As the development requires a total of 25 car parking spaces, at least three bicycle parking spaces are required to satisfy the DCP requirement. There are five bicycle parking spaces provided in the basement car park and therefore satisfies this bicycle parking requirement.

4.5 Loading and Servicing

Ryde DCP 2014 states that childcare centres in a residential area are not to provide on-site access for waste collection vehicles. Kerbside waste collection is proposed with a separate path provided between the site frontage and bin storage room on the west side of the site for bins to be wheeled to the kerbside for collection.

The childcare centre will also receive deliveries, such as groceries. Courier vans (B99 vehicles) can be sufficiently accommodated within the basement car park outside of the centre's peak traffic periods. Any deliveries requiring trucks will occur using available on-street parking in a similar arrangement to waste collection.

4.6 Parking Layout

The proposed car park layout is shown in Figure 4.2 and has generally been designed to comply with the requirements set out in the relevant Australian Standards for car parking facilities, namely AS2890.1:2004, AS2890.3:2015, and AS2890.6:2009.

Figure 4.2: Proposed Car Park Layout

Source: Janssen Design – drawing no. 10258-A006 dated 1 September 2023

According to AS2890.1:2004, the childcare centre, which comprises staff parking and shortterm visitor parking, falls under Class 3 for visitors and Class 1A for staff. Class 3 car parking spaces are to be a minimum of 2.6m wide and 5.4m long with a 5.8m aisle width. Class 1A car parking spaces are to be a minimum of 2.4m wide and 5.4m long with a minimum 5.8m aisle width.

All pick-up / drop-off spaces (visitor car spaces) will be provided as 2.6m wide and 5.4m long and all staff parking spaces will be provided as 2.4m wide and 5.4m long, which is compliant with the AS2890 requirements. A minimum aisle width of 7.2m will be provided for the car park, which is also compliant with the AS2890 requirement.

The accessible parking space has also been designed in accordance with AS2890.6:2009, with a 2.4m wide and 5.4m long space, and an adjoining 2.4m wide and 5.4m long shared zone with bollard.

The driveway has been designed to provide flood mitigation with an initial 1:8 upgrade required from the property boundary to a 2.0m flat section then downgrades provided thereafter into the basement. A 'Stop' sign and linemarking along with a 'Watch for Pedestrian' sign are proposed for vehicles exiting the site to look out for pedestrians along the footpath of the frontage road. This is considered an acceptable as the 24-space car park is to be primarily accessed by familiar users (i.e. staff and parents) and on a daily/ weekly basis.

Swept path analysis has been undertaken and provided in Appendix B, demonstrating vehicles entering and exiting the site in a forward direction via the proposed driveway.

5 Traffic Assessment

5.1 Existing Traffic Volumes

TTPP completed traffic movement counts on Thursday 19th of October 2023 at Terry Road signalised intersections with Marsden Road and Midson Road/ Shaftsbury Road during the weekday AM and PM peak periods. The weekday peak hours were observed to be 8:00am to 9:00am and 5:00pm to 6:00pm in the morning and afternoon respectively. The existing traffic volumes during the peak hours are summarised in Figure 5.1 and Figure 5.2, with full survey results provided in Appendix C.

5.2 Traffic Generation

The TfNSW Guide to Traffic Generating Developments 2002 (Table 3.6) specifies traffic generation rates for childcare centres during the morning and evening road network peak hours. Table 5.1 specifies the expected traffic generation of the proposal.

Table 5.1: Traffic Generation

Number of	Weekday AM Trip	Weekday PM Trip	Weekday AM Trip	Weekday PM Trip	
Children	Rate	Rate	Generation	Generation	
126	0.8 vehicle trips per child	0.7 vehicle trips per child	101 vehicles per hour	88 vehicles per hour	

Table 5.1 suggests that the proposed development is expected to generate 101 and 88 twoway vehicle trips per hour during the weekday AM and PM peak hours, respectively.

5.3 Traffic Distribution and Assignment

The directional distribution and assignment of traffic generated by the proposed development will be influenced by several factors, including the:

- configuration of the arterial road network in the immediate near the site
- existing operation of intersections providing access between the local and arterial road network
- distribution of households near the site
- likely distribution of employee's residences in relation to the site
- configuration of access points to the site.

Having consideration to the above, Figure 5.3 and Figure 5.4 illustrate the additional development traffic movements at the study intersection near the site.

Figure 5.1: Existing Traffic Volumes – AM Peak Hour

Marsden Rd					М	idson Rd				
	964 19 ↓ ⊔	9		69 336 109	t → I		171 +	386 ↓	117 4	Terry Rd
↑ + 544 406	L F Marsden Rd	1	187 350	5 48	† 125	0	Shaftshur	L ← F	40 236 54	

Figure 5.2: Existing Traffic Volumes – PM Peak Hour

Marsden Ro			N	lidson Rd				
	774 156 ↓ ⊶	127 194 82	ן ב ו		158 ب	250 ↓	78 ↓	Terry Rd
† ≓ 933 295	L 337 F 317	⊷ 142	↑ 349	t o	Shaftsbur	L ← Γ	113 257 14	

Figure 5.3: Development Traffic Volumes – AM Peak Hour

Figure 5.4: Development Traffic Volumes – PM Peak Hour

5.4 Traffic Impact

The existing operation of the study intersections have been assessed using SIDRA Intersection, a computer-based modelling package which assesses intersection performance under prevailing traffic conditions.

Level of service (LoS) is directly related to the delays experienced by traffic traversing the intersection. Level of service indicators range from A (indicating good intersection operation) to F (indicating over-saturated conditions with long delays and queues). LoS D is the long-term desirable level of service, particularly for intersections along major arterial roads. A full breakdown of the performance criteria is set out in Table 5.2.

Level of Service	Average Delay (seconds per vehicle)	Traffic Signals, Roundabout	Give Way and Stop Signs
А	Less than 14	good operation	good operation
В	15 to 28	good with acceptable delays and spare capacity	acceptable delays and spare capacity
С	29 to 42	satisfactory	satisfactory, but accident study required
D	43 to 56	operating near capacity	near capacity and accident study required
E	57 to 70	at capacity At signals, incidents will cause excessive delays.	at capacity, requires other control mode
F	Greater than 71	unsatisfactory with excessive queuing	unsatisfactory with excessive queuing; requires other control mode

Table 5.2: Level of Service Criteria for Intersection Operation

5.4.1 Existing Conditions

Nearmap aerial imagery has been used to code the intersection layout and geometry. The TCS signal plans were also used for geometric details of the study intersections including the gradients, layout and lane widths. They also provide details of the phasing arrangements and additional information about how the intersection operates.

The model was calibrated with the use of qualitative queue length data and signal timing data obtained via video footage and site inspections. A minimum of 10 full cycles have been taken during the peak 15-min period of the AM and PM peak hours to determine the frequency and time for each phase in a cycle. The modelled queue lengths have been validated against the surveyed queues undertaken on the same day as the intersection counts.

A summary of the weekday AM and PM peak hour intersection operations are summarised in Table 5.3, with full results presented in Appendix D.

Table 5.3: Existing Intersection Operation

later stim	Control	Weekday	AM	Weekday PM		
Intersection	Control	Ave. Delay	LoS	Ave. Delay	LoS	
Terry Rd / Marsden Rd	Signal	33	С	48	D	
Terry Rd / Shaftsbury Rd / Midson Rd	Signal	37	С	34	С	

Table 5.3 indicates that the study intersections near the site currently operate satisfactorily during the weekday peak periods (LoS C or better), except for the Terry Road / Marsden Road intersection which is operating near capacity (LoS D) during the weekday PM peak hour which is an accepted operation given Marsden Road is a major arterial road.

5.4.2 Post Development Conditions

As discussed in Section 5.1, the proposed development is expected to generate an additional 101 and 88 vehicle movements in the weekday AM and PM peak hours.

Table 5.4 presents a summary of the anticipated operation of the study intersections following the development of the site, with full results presented in Appendix D.

lutere etter	Control	Weekday	AM	Weekday PM		
Intersection	Control	Ave. Delay	LoS	Ave. Delay	LoS	
Terry Rd / Marsden Rd	Signal	38	С	51	D	
Terry Rd / Shaftsbury Rd / Midson Rd	Signal	34	С	36	С	

Table 5.4: Existing + Development Peak Hour Traffic Modelling Results

Table 5.4 illustrates that the study intersections continue to operate at the same Level of Service as existing conditions with the additional traffic (i.e., LOS D or better).

SIDRA modelling of the site access was also completed which suggests that it will operate satisfactorily (i.e. LOS C or better), with 95th percentile queuing within the site expected to be less than a vehicle. The site access modelling also suggests there will be minimal delays for vehicles turning right into the site, with 95th percentile queuing being less than a vehicle. Therefore, such movements are not expected to have any notable impact to the operation of the adjacent Terry Road/ Spencer Street intersection.

Therefore, the development proposal is not expected to comprise the safety and operation of the surrounding road network

6 Summary and Conclusion

This transport impact assessment relates to a proposed childcare centre at 16 Terry Road, Eastwood. The key findings from this assessment are provided below:

- The proposed development comprises the construction of a two-storey childcare centre with one level of basement car park.
- The childcare centre is expected to enrol up to 126 children, ranging from under 1 year to 5 years, with an expected staff number of 17.
- The proposed basement car park will be accessed via a new two-way driveway to/ from Terry Road. Vehicle swept path shows the proposed driveway can accommodate vehicles entering and exiting the site in a forward direction, without conflicts.
- According to Ryde DCP 2014, 16 visitor spaces and 9 staff car spaces would be required (a total of 25 car parking spaces).
- It is proposed to provide 24 car parking spaces, including 10 staff spaces and 14 visitor spaces. This is considered appropriate when accounting for proximity to frequent bus services to key destinations, location in a primarily low-density residential area with limited competing demand and not to mention the findings of TfNSW's updated traffic generation and parking study for childcare that car parking demand reduces as the childcare centre size (i.e. number of children) increases.
- Kerbside waste collection is proposed with a separate path provided between the site frontage and bin storage room on the west side of the site for bins to be wheeled to the kerbside for collection.
- The proposed car park layout has been generally designed in accordance with the requirements of the AS2890 series.
- The proposed development is expected to generate 101 vehicle trips in the weekday AM peak period and 88 vehicle trips in the weekday PM peak period.
- Intersection modelling completed suggests that development traffic is not expected to comprise the safety and operation of the surrounding road network.

Overall, the proposal development can be supported from a traffic and parking perspective.

Appendix A

Architectural Plans

	AMENDMENTS		
SSUE:	DESCRIPTION	DATE:	<u>Project IIII</u>
			- Proposed
			- Centre
			_
			_

		AMENDMENTS		
ISSUE:	DESCRIPTION		DATE:	<u>Project III</u>
				– Proposea
				- Contro
				Cenile
				_
				_
				_

t	le:	
k	Child	Care

DRAWING TITLE: Elevations

<u>ADDRESS:</u> 16 Terry Road, Eastwood <u>client details:</u> Zhong

LOCAL GO	OVERNMENT AF	REA:	
Ryde (Council		
	Issue For: DA	<u>Issue:</u> A	
Date:	<u>Scale:</u>	Drawing #:	<u>Project #:</u> 10258

		AMENDMENTS		
ISSUE:	DESCRIPTION		DATE:	<u>Project II</u>
				- Proposed
				- Centre
				_
				_
				_
				_

tle: d Child Care

DRAWING TITLE: Elevations

ADDRESS: 16 Terry Road, Eastwood

CLIENT DETAILS: Zhong

LOCAL GO			
Ryde (Council		
	Issue For: DA	<u>Issue:</u> A	
<u>Date:</u> 1.9.2023	<u>Scale:</u> 1:100	Drawing #: A011	<u>Project #:</u> 10258

NOTE: ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH BCA, SAA &

	AMENDMENTS		
SUE:	DESCRIPTION	DATE:	Project lifte:
			Proposed Child
			Cernie

	DRAWING TITLE:	<u>CLIENT DETAILS:</u>
d Care	Sections	Zhong
	ADDRESS:	LOCAL GOVERNMENT AREA: Ryde Council
	16 Terry Road, Eastwood	Issue For: DA
		Date: Scale: Drawing #: Project #: 1.9.2023 1:100 A012 10258

Appendix B

Site Layout Review

Appendix C

Traffic Surveys

transport planning

Job Number	23344
Intersection	Terry Rd / Marsden Rd
Weather	Fine
Date	Thursday, 19 October 2023
AM Peak	7:45 AM
PM Peak	4:45 PM

S - Marsden Road

PM PEAK

N - Marsden Road

U

S - Marsden Road

⊢

14 7 0 0 0 U 0 33

0 4

U 0 0

Ĺ 333 4

←

L

ΗV 1

E - Terry Road

E - Terry Road

741 155 LV

Ļ

0 0

LV ΗV

296 21

Traffic Flows (Separate Classes)

← Î

LV 0 0 919 288 0

ΗV

Traffic Flows	Totals	with He	eavies)							
			N -	Marso	den Ro	ad				
					0 0 U	0 0 1	46 964 ↓	3 199 ⊾	HV Total	Road
	41	Î	r,	U		U t ←	0 187 0	0 2 0	-	E - Terry I
Total	0	544	406	0		t	350	14		
HV	0	61	18	0			Total	ΗV		
			S -	Marso	den Roo	bc				

Hourly Flow	South Approach					East Approach								North Approach Marsden Road									West Approach << <name of="" road="">>></name>																										
nouny now	, 	Left		Т	íhrough	MOIS	den ku	Right			U-turn				Left		Th	rough	Ten	IY KOUU	Right		ι	U-turn				.eft		Thr	rough	Maisder	Right			U-turn			Lef	t		Through		IE OF RU	Right		U-t	um	
Start End	Lights	Heavies	Total	Lights H	Heavies	Total	Lights H	Heavies	Total	Lights H	leavies	Total	Peds Li	ghts He	eavies 1	Total I	Lights He	avies	Total L	ights H	eavies	Total I	ights H	eavies	Total I	Peds L	ights He	avies T	fotal Li	ghts He	avies To	tal Ligh	hts Heavie	es Total	Lights H	leavies	Total P	eds Ligi	hts Heav	ies Tota	al Lights	Heavies	Total	Lights I	Heavies	Total L	ights Hea	ivies To	tal Peds
0:15 1:15																																																	
0:30 1:30																																																	
1:00 2:00																																																	
1:15 2:15	;																																																
1:30 2:30																																																	
2:00 3:00																																																	
2:15 3:15																																																	
2:30 3:30													_																																				
3:00 4:00																																																	
3:15 4:15													_																																				
3:45 4:45																																																	_
4:00 5:00																																																	
4:15 5:10																																																	
4:45 5:45	;																																																
5:15 6:16													_																																				
5:30 6:30																																																	
5:45 6:45																																																	
6:15 7:15																																																	
6:30 7:30																																																	
6:45 7:45 7:00 8:00	0	0	0	549	81	630	312	16	328	0	0	0	7	237	7	244	0	0	0	128	6	134	0	0	0	3	129	2 .	131	930	39 9	59 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0		0 0
7:15 8:15	0	0	0	536	71	607	350	19	369	0	0	0	7	281	8	289	ŏ	0	0	147	5	152	0	0	0	4	140	3	143	966	33 9	99 0	0	0	Ő	0	0	D C	0	0	0	0	0	0	0	0	0 0		a 0
7:30 8:30	0	0	0	487	67	554	373	21	394	0	0	0	9	299	10	309	0	0	0	166	3	169	0	0	0	3	161	4	165	951	41 9	92 0	0 0	0	0	0	0		0	0	0	0	0	0	0	0	0 (٥ د
8:00 9:00	0	0	0	469	55	544	366	17	383	0	0	0	4	350	12	362	0	0	0	185	2	187	0	0	0	1	215	3 1	218 8	879	53 9	32 0		0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0
8:15 9:15																																																	
8:45 9:45																																																	_
9:00 10:0	D																																																
9:15 10:1 9:30 10:3																																																	
9:45 10:4	5																																																
10:00 11:0	5												_																																				
10:30 11:3	D																																																
10:45 11:4	5																																																
11:15 12:1	5																																																_
11:30 12:3	D																																																
12:00 13:0	D																																																
12:15 13:1	5																																																
12:30 13:3	5												_																																				
13:00 14:0	D																																																
13:15 14:1	5												_																																				
13:45 14:4	5																																																
14:00 15:0	0 0	0	0	677	45	722	161	10	171	0	0	0	8	209	20	229	0	0	0	242	8	250	0	0	0	1	128	2	130	608	63 6	71 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 (D	٥ د
14:15 15:1 14:30 15:3		0	0	771	46 38	756 809	199	8	213	0	0	0	10	228	13	243	0	0	0	265	4	272	0	0	0	1	142	2	143 3	596 626	58 6	57 0 34 0		0	0	0	0			0	0	0	0	0	0	0	0 0		0 0
14:45 15:4	5 0	0	0	791	42	833	210	9	219	0	0	0	9	288	11	299	0	0	0	292	6	298	0	0	0	1	152	1	153 (697	48 7	15 0	0	0	0	0	0	D C	0	0	0	0	0	0	0	0	0 0	D	b 0
15:00 16:0	0 0	0	0	762	35	797	223	7	230	0	0	0	7	325	9	334	0	0	0	317	8	325	0	0	0	0	162	2	164	718	46 7	54 0	0 0	0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 C
15:30 16:3		0	0	778	20	805	213	11	209	0	0	0	4	339	11	350	0	0	0	313	9	322	0	0	0	3	149	6 .	155	745	42 7	37 0		0	0	0	0		0	0	0	0	0	0	0	0	0 0		0 0
15:45 16:4	5 0	0	0	745	20	765	216	8	224	0	0	0	2	356	12	368	0	0	0	325	5	330	0	0	0	6	130	7	137	704	40 7	14 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	D	٥ د
16:00 17:0	0 0 5 0	0	0	796 812	19	815 827	228	9	237	0	0	0	5 4	332 342	16	348	0	0	0	313	4	317	0	0	0	7	124	3	130	703 666	34 7	37 0 98 0		0	0	0	0			0	0	0	0	0	0	0	0 0		0 0
16:30 17:3	0 0	0	0	827	15	842	259	5	264	0	0	0	4	317	20	337	ō	0	0	326	2	328	0	0	0	5	147	2	149	705	31 7	36 0	0	0	0	0	0	D C	0	0	0	0	0	0	0	0	0 (a 0
16:45 17:4	5 0	0	0	919	14	933	288	7	295	0	0	0	5	296	21	317	0	0	0	333	4	337	0	0	0	2	155	1	156	741	33 7	74 0	0 0	0	0	0	0		0	0	0	0	0	0	0	0	0 () O
17:15 18:1	5	0	0	707	17	920	301	4	305	0	0	U	2	270	17	315	0	0	0	32/	2	329	0	0	U		13/		136	/33	30 1	53 0	, ,	0	0	0	0		0	0	0	0	0	0	0	0	0		, 0
17:30 18:3	D																																																
17:45 18:4	0																																																
18:15 19:1	5																																																
18:30 19:3	0																																																
18:45 19:4 19:00 20:0	D																																																
19:15 20:1	5																																																
19:30 20:3 19:45 20:4	5																									_																							_
20:00 21:0	D																																																
20:15 21:1	5																																																
20:30 21:3 20:45 21:4	5																																																
21:00 22:0	D																																																
21:15 22:1	5																									_																							_
21:45 22:4	5																																																
22:00 23:0	D																									_																							
22:13 23:1 22:30 23:3	D																																																
22:45 23:4	5																																																_
23:00 0:00																_						_																											

transport planning

Job Number	23344
Intersection	Terry Rd / Midson Rd / S
Weather	Fine
Date	Thursday, 19 October 20
AM Peak	8:00 AM
PM Peak	5:00 PM

23344	
Terry Rd / Midson Rd / Shaftsbury Rd	
Fine	
Thursday, 19 October 2023	
8:00 AM	
5:00 PM	

AM PEAK

Hourly Flows					South	Appro	ach											East	Approa	ach											North	Approa	ch											West	Approa	ach 1				
	Le	ft		Through			Right			U-turn				Left		T	hrough			Right			U-turn				Left		T	hrough	_	I	Right		l	U-turn				Left		Tł	hrough			Right		U	turn	
Start End 0:00 1:00 0:15 1:15 0:30 1:30 0:45 1:45 1:00 2:00 1:15 2:15 1:30 2:30 1:45 2:45	Lights Hear	vies Total	Lights	Heavies	Total	Lights I	Heavies	Total	Lights	Heavie	s Total	Peds	Lights	Heavies	Total	Lights H	leavies	Total	Lights F	leavies	Total	Lights H	leavies	Total	Peds	Lights H	eavies	Total	Lights H	leavie	Total	Lights He	eavies	Total	Lights H	leavies	Total	Peds	ights He	eavies	Total	Lights H	leavies	Total I	Lights H	leavie	Total Li	ights He	avies To	al Peds
2:15 3:15 2:30 3:30 2:45 3:45 3:00 4:00 3:15 4:15 3:30 4:30 3:45 4:45 4:00 5:00 4:15 5:13 5:00 6:00 4:15 5:15 5:00 6:00 5:45 6:40																																																		
6:15 7:15 6:30 7:30 6:45 7:45 7:00 8:00 7:15 8:15 7:30 8:30 7:45 8:45 7:30 8:30 9:30 9:30 9:45 10:30 9:45 10:30 9:45 10:30 11:15 10:31 10:30 11:30 10:45 11:45	29 2 36 2 41 2 47 1	31 38 43 49 48	84 109 115 114 122	0 1 2 3 3 3	84 110 117 117 125			0 0 0 0 0 0	0 0 0 0		00000	8 10 26 29 28	12 22 31 43 51	0 2 3 3	12 22 33 46 54	140 169 211 223 230	10 8 9 8 6	150 177 220 231 236	25 30 35 40 40		25 30 35 40 40			0 0 0 0 0	4 9 28 31 34	58 66 84 102 116	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61 67 85 103 117	250 304 349 366 383	3 3 3 3 3	253 307 351 369 386	139 152 145 166 168	0 1 3 3	139 153 146 169 171			0 0 0 0 0 0	9 14 15 14 14 14	59 60 65 70 69		59 60 65 70 69	272 317 346 346 320	10 12 16 16 16	282 329 362 362 336	63 67 75 87 109	1 0 0	64 68 75 87 109			1 2 3 5 1 13 1 16 1 15
11:15 12:15 11:30 12:30 11:34 12:30 11:35 12:45 12:20 13:00 12:21 13:30 12:23 13:30 12:24 13:30 12:24 13:30 12:24 13:30 12:30 14:30 13:35 14:15 14:30 14:30 14:30 14:30 14:30 14:30 15:30 14:30 15:30 14:30 15:30 16:30 15:30 16:30 15:31 16:35 15:35 16:35 16:30 17:30 16:35 17:35 16:35 17:30 16:36 17:30 17:35 18:30 17:35 18:30 17:35 18:30 17:35 18:30 17:35 18:30 17:35 18:30 16:30 <td>107 2 116 2 126 2 115 6 121 5 112 5 172 2 172 2 172 3 172 4 129 3 139 3</td> <td>109 118 122 126 142 174 142 176 153 176 153 176 153 142</td> <td>261 276 286 275 278 284 287 296 310 319 312 348</td> <td>1 1 2 2 2 1 0 0 1 2 2 2 1</td> <td>262 277 288 277 280 285 287 290 312 321 314 349</td> <td>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td></td> <td>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td></td> <td>29 36 36 10 9 2 0 0 1 1 1 1 1 0</td> <td>6 14 21 24 22 19 18 16 15 13 15 14</td> <td>000000000000000000000000000000000000000</td> <td>6 14 21 22 19 19 17 16 14 15 14</td> <td>133 170 199 200 224 214 214 207 208 207 237 249</td> <td>10 7 5 4 6 7 6 8 6 7 9 8</td> <td>143 177 206 205 228 222 218 220 215 214 246 257</td> <td>56 62 63 54 67 75 78 88 86 100 1111 112</td> <td>3 2 1 1 2 2 3 2 1 1 1 1 1</td> <td>59 64 64 55 68 77 80 93 90 87 101 112 113</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>23 31 32 21 14 9 14 10 13 12 5 7 8</td> <td>64 51 56 53 58 53 56 62 67 81 78</td> <td>2 2 0 1 1 1 1 0 0 0 0 0 0 0</td> <td>66 53 56 57 64 59 53 56 62 67 81 78</td> <td>204 215 222 251 247 256 275 261 263 266 267 259 250</td> <td>4 5 3 2 3 1 1 1 0 0 0</td> <td>208 220 226 256 258 258 262 262 262 264 267 259 250</td> <td>91 96 116 143 155 155 155 160 161 146 149</td> <td>7 6 4 5 4 5 4 2 5 6 9 111 9</td> <td>98 102 120 148 154 155 158 160 166 157 158</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>10 10 11 11 4 3 1 0 1 2 2 2 1 1 0</td> <td>70 72 71 76 82 79 99 101 114 112 126 127</td> <td>1 2 1 1 2 2 2 2 2 1 0 0 0 0 0</td> <td>71 74 72 77 84 81 94 101 102 114 112 126 127</td> <td>119 147 146 158 158 158 159 162 166 159 162 166 188 189</td> <td>9 9 7 9 8 10 12 9 11 8 7 8 5</td> <td>128 156 153 153 166 168 168 173 174 168 179 194</td> <td>74 73 73 81 77 78 72 77 76 81 78 82</td> <td>1 0 2 2 3 3 2 2 1 1 0 0</td> <td>75 73 73 83 79 81 77 74 82 77 78 82</td> <td></td> <td></td> <td>) 8) 12) 20) 23) 23) 20) 17) 16) 14) 15) 7) 8</td>	107 2 116 2 126 2 115 6 121 5 112 5 172 2 172 2 172 3 172 4 129 3 139 3	109 118 122 126 142 174 142 176 153 176 153 176 153 142	261 276 286 275 278 284 287 296 310 319 312 348	1 1 2 2 2 1 0 0 1 2 2 2 1	262 277 288 277 280 285 287 290 312 321 314 349	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		29 36 36 10 9 2 0 0 1 1 1 1 1 0	6 14 21 24 22 19 18 16 15 13 15 14	000000000000000000000000000000000000000	6 14 21 22 19 19 17 16 14 15 14	133 170 199 200 224 214 214 207 208 207 237 249	10 7 5 4 6 7 6 8 6 7 9 8	143 177 206 205 228 222 218 220 215 214 246 257	56 62 63 54 67 75 78 88 86 100 1111 112	3 2 1 1 2 2 3 2 1 1 1 1 1	59 64 64 55 68 77 80 93 90 87 101 112 113	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 31 32 21 14 9 14 10 13 12 5 7 8	64 51 56 53 58 53 56 62 67 81 78	2 2 0 1 1 1 1 0 0 0 0 0 0 0	66 53 56 57 64 59 53 56 62 67 81 78	204 215 222 251 247 256 275 261 263 266 267 259 250	4 5 3 2 3 1 1 1 0 0 0	208 220 226 256 258 258 262 262 262 264 267 259 250	91 96 116 143 155 155 155 160 161 146 149	7 6 4 5 4 5 4 2 5 6 9 111 9	98 102 120 148 154 155 158 160 166 157 158	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 11 11 4 3 1 0 1 2 2 2 1 1 0	70 72 71 76 82 79 99 101 114 112 126 127	1 2 1 1 2 2 2 2 2 1 0 0 0 0 0	71 74 72 77 84 81 94 101 102 114 112 126 127	119 147 146 158 158 158 159 162 166 159 162 166 188 189	9 9 7 9 8 10 12 9 11 8 7 8 5	128 156 153 153 166 168 168 173 174 168 179 194	74 73 73 81 77 78 72 77 76 81 78 82	1 0 2 2 3 3 2 2 1 1 0 0	75 73 73 83 79 81 77 74 82 77 78 82) 8) 12) 20) 23) 23) 20) 17) 16) 14) 15) 7) 8
18:30 19:30 18:45 19:45 19:00 20:00 19:15 20:15 19:30 20:30 19:45 20:45 20:00 21:00 20:15 21:15 20:30 21:30 21:10 22:00 21:15 22:32 21:45 22:45 22:15 23:16 22:42 23:40 22:42 23:40																																																		

Appendix D

SIDRA Outputs

Site: 1.1895 [AM_Terry Rd / Marsden Rd (Site Folder: Existing)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM FLO [Total	AND WS HV]	Deg. Satn	Aver. Delay	Level of Service	AVERAG OF Q [Veh.	BE BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	n: Mars	sden Roa	ad	VCII/II	/0	0/0	300		Ven					N11/11
2	T1	544	61	573	11.2	0.414	4.7	LOS A	10.9	83.4	0.36	0.33	0.36	54.8
3	R2	406	18	427	4.4	*0.936	54.4	LOS D	23.3	169.6	1.00	0.99	1.32	26.6
Appro	bach	950	79	1000	8.3	0.936	26.0	LOS B	23.3	169.6	0.63	0.61	0.77	37.7
East:	Terry	Road												
4	L2	350	14	368	4.0	0.453	27.6	LOS B	14.1	102.2	0.71	0.77	0.71	35.0
6	R2	187	2	197	1.1	0.881	72.8	LOS F	13.0	91.8	1.00	0.99	1.31	25.8
Appro	bach	537	16	565	3.0	0.881	43.3	LOS D	14.1	102.2	0.81	0.85	0.92	30.3
North	: Mars	den Roa	d											
7	L2	199	3	209	1.5	*0.773	19.2	LOS B	29.8	215.3	0.92	0.89	0.92	35.2
8	T1	964	46	1015	4.8	*0.773	36.6	LOS C	30.6	222.9	0.93	0.86	0.93	35.8
Appro	bach	1163	49	1224	4.2	0.773	33.6	LOS C	30.6	222.9	0.92	0.86	0.93	35.7
All Vehic	les	2650	144	2789	5.4	0.936	32.8	LOS C	30.6	222.9	0.80	0.77	0.87	35.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian M	loveme	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Marsde	en Road										
P1 Full	6	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
East: Terry Ro	ad										
P2 Full	2	2	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	8	8	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Thursday, 16 November 2023 10:48:00 AM

Project: C:\Users\ccfha\OneDrive - TTPP\23344 16 Terry Road, Eastwood\07 Modelling Files\Model\23344-231027.sip9

Site: 1.1895 [PM_Terry Rd / Marsden Rd (Site Folder: Existing)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Phase Times)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM FLO [Total	AND WS HV]	Deg. Satn	Aver. Delay	Level of Service	AVERAC OF Q [Veh.	BE BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	n: Mars	sden Roa	ad	VCII/II	/0	0/0	300		Ven					N111/11
2	T1	933	14	982	1.5	0.768	13.9	LOS A	38.1	270.1	0.73	0.67	0.73	46.8
3	R2	295	7	311	2.4	*0.866	41.5	LOS C	13.0	92.6	1.00	0.93	1.21	30.1
Appro	bach	1228	21	1293	1.7	0.866	20.5	LOS B	38.1	270.1	0.80	0.73	0.85	41.3
East:	Terry I	Road												
4	L2	317	21	334	6.6	0.376	37.4	LOS C	11.4	84.4	0.63	0.75	0.63	36.7
6	R2	337	4	355	1.2	* 1.116	196.6	LOS F	38.1	269.4	1.00	1.41	2.09	14.5
Appro	bach	654	25	688	3.8	1.116	119.4	LOS F	38.1	269.4	0.82	1.09	1.38	18.1
North	: Mars	den Roa	d											
7	L2	156	1	164	0.6	0.684	14.6	LOS B	23.1	166.2	0.90	0.84	0.90	35.4
8	T1	774	33	815	4.3	*0.684	38.1	LOS C	23.8	172.9	0.90	0.81	0.90	35.5
Appro	bach	930	34	979	3.7	0.684	34.1	LOS C	23.8	172.9	0.90	0.82	0.90	35.5
All Vehic	les	2812	80	2960	2.8	1.116	48.0	LOS D	38.1	270.1	0.84	0.85	0.99	30.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Noveme	ent Perf	ormano	ce							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Marsde	en Road										
P1 Full	5	5	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
East: Terry Ro	ad										
P2 Full	2	2	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	7	7	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Thursday, 9 November 2023 12:32:12 PM

Project: C:\Users\ccfha\OneDrive - TTPP\23344 16 Terry Road, Eastwood\07 Modelling Files\Model\23344-231027.sip9

Site: 2.1139 [AM_Terry Rd / Shaftsbury Rd / Midson Rd (Site Folder: Existing)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 97 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM/ FLO [Total	AND WS HV]	Deg. Satn	Aver. Delay	Level of Service	AVERAC OF Q [Veh.	GE BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	a: Sha	veh/h ftebury P	veh/h	veh/h	%	V/C	sec		veh	m		_		km/h
Souti	1. Ona		Uau											
1	L2	48	1	51	2.1	0.061	21.6	LOS B	1.3	9.2	0.58	0.69	0.58	30.6
2	T1	125	3	132	2.4	0.271	31.2	LOS C	5.0	35.8	0.84	0.68	0.84	25.4
Appr	oach	173	4	182	2.3	0.271	28.5	LOS C	5.0	35.8	0.77	0.68	0.77	26.7
East:	Terry	Road												
4	L2	54	3	57	5.6	0.164	38.3	LOS C	2.5	18.5	0.84	0.73	0.84	21.9
5	T1	236	6	248	2.5	0.719	39.1	LOS C	13.0	92.5	0.98	0.86	1.03	15.4
6	R2	40	0	42	0.0	*0.719	50.1	LOS D	13.0	92.5	0.98	0.87	1.04	13.5
Appr	oach	330	9	347	2.7	0.719	40.3	LOS C	13.0	92.5	0.96	0.84	1.00	16.4
North	n: Mids	on Road												
7	L2	117	1	123	0.9	0.629	29.1	LOS C	19.3	135.9	0.83	0.76	0.83	13.8
8	T1	386	3	406	0.8	*0.629	23.0	LOS B	19.3	135.9	0.83	0.76	0.83	29.5
9	R2	171	3	180	1.8	0.793	56.2	LOS D	9.1	64.9	1.00	0.92	1.21	11.6
Appr	oach	674	7	709	1.0	0.793	32.5	LOS C	19.3	135.9	0.87	0.80	0.92	20.5
West	: Terry	Road												
10	L2	69	0	73	0.0	0.188	28.5	LOS C	4.2	30.0	0.63	0.63	0.63	19.7
11	T1	336	16	354	4.8	0.826	42.9	LOS D	15.6	112.7	0.91	0.91	1.03	18.6
12	R2	109	0	115	0.0	*0.826	53.2	LOS D	15.6	112.7	0.99	0.99	1.14	23.7
Appr	oach	514	16	541	3.1	0.826	43.2	LOS D	15.6	112.7	0.89	0.89	1.00	16.0
All Vehic	cles	1691	36	1780	2.1	0.826	36.9	LOS C	19.3	135.9	0.88	0.82	0.95	18.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	orman	ce							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
	VOI.	FIOW	Delay	Service	[Ped	Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Shafts	oury Roa	ad									
P1 Full	7	7	42.7	LOS E	0.0	0.0	0.94	0.94	196.5	200.0	1.02
East: Terry Ro	ad										
P2 Full	7	7	42.7	LOS E	0.0	0.0	0.94	0.94	196.5	200.0	1.02
North: Midson	Road										
P3 Full	7	7	42.7	LOS E	0.0	0.0	0.94	0.94	196.5	200.0	1.02

West: Terry Ro	ad										
P4 Full	3	3	42.7	LOS E	0.0	0.0	0.94	0.94	196.5	200.0	1.02
All Pedestrians	24	25	42.7	LOS E	0.0	0.0	0.94	0.94	196.5	200.0	1.02

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Thursday, 9 November 2023 12:34:31 PM

Project: C:\Users\ccfha\OneDrive - TTPP\23344 16 Terry Road, Eastwood\07 Modelling Files\Model\23344-231027.sip9

Site: 2.1139 [PM_Terry Rd / Shaftsbury Rd / Midson Rd (Site Folder: Existing)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 96 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM/ FLO [Total	AND WS HV]	Deg. Satn	Aver. Delay	Level of Service	AVERAC OF Q [Veh.	GE BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
Sout	n: Shai	ftsbury R	oad											
1	L2	142	3	149	2.1	0.191	24.1	LOS B	4.3	30.4	0.65	0.74	0.65	29.0
2	T1	349	1	367	0.3	*0.711	35.1	LOS C	16.0	112.1	0.96	0.84	0.99	23.7
Appr	oach	491	4	517	0.8	0.711	31.9	LOS C	16.0	112.1	0.87	0.81	0.89	25.1
East:	Terry	Road												
4	L2	14	0	15	0.0	0.163	33.6	LOS C	3.0	21.6	0.79	0.64	0.79	25.3
5	T1	257	8	271	3.1	0.713	33.2	LOS C	14.0	100.0	0.91	0.80	0.94	17.2
6	R2	113	1	119	0.9	*0.713	41.4	LOS C	14.0	100.0	0.96	0.86	1.00	14.5
Appr	oach	384	9	404	2.3	0.713	35.6	LOS C	14.0	100.0	0.92	0.81	0.95	16.7
North	n: Mids	on Road												
7	L2	78	0	82	0.0	0.420	26.5	LOS B	11.2	78.7	0.75	0.68	0.75	14.2
8	T1	250	0	263	0.0	0.420	20.6	LOS B	11.2	78.7	0.75	0.68	0.75	30.7
9	R2	158	9	166	5.7	*0.994	88.6	LOS F	11.1	81.7	1.00	1.18	1.82	7.9
Appr	oach	486	9	512	1.9	0.994	43.6	LOS D	11.2	81.7	0.83	0.84	1.09	16.7
West	: Terry	Road												
10	L2	127	0	134	0.0	0.127	18.7	LOS B	2.6	18.5	0.45	0.69	0.45	27.1
11	T1	194	5	204	2.6	0.529	25.6	LOS B	9.5	67.8	0.84	0.75	0.84	22.7
12	R2	82	0	86	0.0	*0.529	32.8	LOS C	9.5	67.8	0.84	0.75	0.84	29.1
Appr	oach	403	5	424	1.2	0.529	24.9	LOS B	9.5	67.8	0.72	0.73	0.72	22.8
All Vehic	les	1764	27	1857	1.5	0.994	34.4	LOS C	16.0	112.1	0.84	0.80	0.92	20.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	ormand	ce							
Mov	Input	Dem.	Aver.	Level of .	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	lime	Dist.	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Shaftst	oury Roa	ad									
P1 Full	1	1	42.2	LOS E	0.0	0.0	0.94	0.94	196.0	200.0	1.02
East: Terry Ro	ad										
P2 Full	8	8	42.2	LOS E	0.0	0.0	0.94	0.94	196.0	200.0	1.02
North: Midson	Road										
P3 Full	1	1	42.2	LOS E	0.0	0.0	0.94	0.94	196.0	200.0	1.02

West: Terry Ro	ad										
P4 Full	8	8	42.2	LOS E	0.0	0.0	0.94	0.94	196.0	200.0	1.02
All Pedestrians	18	19	42.2	LOS E	0.0	0.0	0.94	0.94	196.0	200.0	1.02

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Thursday, 9 November 2023 12:34:31 PM

Project: C:\Users\ccfha\OneDrive - TTPP\23344 16 Terry Road, Eastwood\07 Modelling Files\Model\23344-231027.sip9

Site: 1.1895 [AM_Terry Rd / Marsden Rd (Site Folder: Existing + Dev)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemer	nt Perfor	mance										
Mov ID	Turn	INF VOLI	PUT JMES	DEM, FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	AVERAG OF Q	GE BACK UEUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mars	sden Roa	ad											
2	T1	544	61	573	11.2	0.419	5.1	LOS A	6.9	53.0	0.37	0.34	0.37	54.4
3	R2	425	18	447	4.2	* 1.011	88.2	LOS F	19.3	140.2	1.00	1.13	1.65	17.7
Appro	bach	969	79	1020	8.2	1.011	41.5	LOS C	19.3	140.2	0.65	0.68	0.93	28.5
East:	Terry	Road												
4	L2	367	14	386	3.8	0.615	26.6	LOS B	9.1	66.0	0.71	0.77	0.71	35.4
6	R2	196	2	206	1.0	0.866	69.6	LOS E	8.2	58.2	1.00	0.96	1.30	26.3
Appro	bach	563	16	593	2.8	0.866	41.5	LOS C	9.1	66.0	0.81	0.84	0.92	31.1
North	: Mars	den Roa	d											
7	L2	208	3	219	1.4	*0.779	38.6	LOS C	18.5	133.8	0.93	0.89	0.93	35.6
8	T1	964	46	1015	4.8	*0.779	32.8	LOS C	19.0	138.7	0.93	0.86	0.94	35.7
Appro	bach	1172	49	1234	4.2	0.779	33.9	LOS C	19.0	138.7	0.93	0.87	0.93	35.7
All Vehic	les	2704	144	2846	5.3	1.011	38.2	LOS C	19.3	140.2	0.80	0.80	0.93	31.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance														
Mov LD Crossing	Input Dem. Aver.		Level of a	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.				
	VOI.	FIOW	Delay	Service	[Ped	Dist]	Que	Stop Rate	Time	Dist.	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
South: Marsde	en Road													
P1 Full	6	6	54.2	LOS E	0.0	0.0	0.95	0.95	219.5	215.0	0.98			
East: Terry Ro	ad													
P2 Full	2	2	54.2	LOS E	0.0	0.0	0.95	0.95	221.1	217.0	0.98			
All Pedestrians	8	8	54.2	LOS E	0.0	0.0	0.95	0.95	219.9	215.5	0.98			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 1.1895 [PM_Terry Rd / Marsden Rd (Site Folder: Existing + Dev)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Phase Times)

Vehicle Movement Performance														
Mov ID	Turn	INF VOLI	PUT JMES	DEM, FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	AVERAG OF Q	GE BACK UEUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South: Marsden Road														
2	T1	933	14	982	1.5	0.768	13.9	LOS A	23.3	165.5	0.73	0.69	0.73	46.8
3	R2	308	7	324	2.3	*0.904	48.5	LOS D	9.0	64.3	1.00	0.98	1.32	28.4
Appro	bach	1241	21	1306	1.7	0.904	22.5	LOS B	23.3	165.5	0.80	0.76	0.88	40.3
East:	Terry	Road												
4	L2	330	21	347	6.4	0.390	22.7	LOS B	7.4	54.3	0.64	0.75	0.64	37.0
6	R2	351	4	369	1.1	* 1.162	219.9	LOS F	29.4	208.0	1.00	1.49	2.41	12.3
Appro	bach	681	25	717	3.7	1.162	124.3	LOS F	29.4	208.0	0.83	1.13	1.55	17.3
North	: Mars	den Roa	d											
7	L2	163	1	172	0.6	0.689	38.3	LOS C	14.3	102.7	0.90	0.85	0.90	35.7
8	T1	774	33	815	4.3	*0.689	33.4	LOS C	14.7	107.0	0.90	0.82	0.90	35.5
Appro	bach	937	34	986	3.6	0.689	34.3	LOS C	14.7	107.0	0.90	0.82	0.90	35.5
All Vehic	les	2859	80	3009	2.8	1.162	50.6	LOS D	29.4	208.0	0.84	0.87	1.05	29.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance														
Mov	Input Dem. Aver.		Aver.	Level of AVERAGE BACK OF			Prop. Ef	fective	Travel	Travel	Aver.			
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	lime	Dist.	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
South: Marsde	en Road													
P1 Full	5	5	54.2	LOS E	0.0	0.0	0.95	0.95	219.5	215.0	0.98			
East: Terry Ro	ad													
P2 Full	2	2	54.2	LOS E	0.0	0.0	0.95	0.95	221.1	217.0	0.98			
All Pedestrians	7	7	54.2	LOS E	0.0	0.0	0.95	0.95	220.0	215.6	0.98			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 2.1139 [AM_Terry Rd / Shaftsbury Rd / Midson Rd (Site Folder: Existing + Dev)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 97 seconds (Site User-Given Phase Times)

Vehicle Movement Performance														
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM/ FLO [Total	AND WS HV]	Deg. Satn	Aver. Delay	Level of Service	AVERAG OF QI [Veh.	E BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
Sout	n: Sha	ftsbury R	oad											
1	L2	50	1	53	2.0	0.063	21.6	LOS B	0.8	5.9	0.58	0.69	0.58	31.2
2	T1	125	3	132	2.4	0.271	31.2	LOS C	3.1	21.9	0.84	0.68	0.84	25.4
Appr	oach	175	4	184	2.3	0.271	28.4	LOS B	3.1	21.9	0.77	0.68	0.77	26.9
East:	Terry	Road												
4	L2	54	3	57	5.6	0.167	38.3	LOS C	1.6	11.6	0.84	0.73	0.84	22.3
5	T1	247	6	260	2.4	0.734	39.8	LOS C	8.3	59.1	0.98	0.88	1.05	15.5
6	R2	40	0	42	0.0	*0.734	45.6	LOS D	8.3	59.1	0.99	0.88	1.06	13.5
Appr	oach	341	9	359	2.6	0.734	40.2	LOS C	8.3	59.1	0.96	0.85	1.02	16.4
North	n: Mids	on Road												
7	L2	117	1	123	0.9	0.729	28.5	LOS C	11.8	83.2	0.83	0.76	0.83	13.8
8	T1	386	3	406	0.8	*0.729	22.4	LOS B	11.8	83.2	0.83	0.76	0.83	29.5
9	R2	179	3	188	1.7	0.830	57.5	LOS E	6.0	42.7	1.00	0.93	1.29	11.4
Appr	oach	682	7	718	1.0	0.830	32.7	LOS C	11.8	83.2	0.87	0.80	0.95	20.5
West	: Terry	Road												
10	L2	72	0	76	0.0	0.197	22.5	LOS B	2.7	19.3	0.64	0.63	0.64	19.7
11	T1	352	16	371	4.5	0.863	31.6	LOS C	10.7	77.0	0.90	0.92	1.09	17.8
12	R2	114	0	120	0.0	*0.863	41.1	LOS C	10.7	77.0	0.98	1.00	1.21	23.1
Appr	oach	538	16	566	3.0	0.863	32.4	LOS C	10.7	77.0	0.88	0.90	1.05	19.5
All Vehic	les	1736	36	1827	2.1	0.863	33.6	LOS C	11.8	83.2	0.88	0.83	0.98	20.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance														
Mov	Input Dem. Aver.		Level of	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.				
ID Crossing	Vol.	Flow	Delay	Service	QUI [Ped	=UE Dist]	Que	Stop Rate	lime	Dist.	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
South: Shafts	bury Roa	ad												
P1 Full	7	7	42.7	LOS E	0.0	0.0	0.94	0.94	205.4	211.5	1.03			
East: Terry R	oad													
P2 Full	7	7	42.7	LOS E	0.0	0.0	0.94	0.94	206.2	212.5	1.03			
North: Midsor	n Road													
P3 Full	7	7	42.7	LOS E	0.0	0.0	0.94	0.94	207.3	214.0	1.03			

West: Terry Road												
P4 Full	3	3	42.7	LOS E	0.0	0.0	0.94	0.94	206.9	213.5	1.03	
All Pedestrians	24	25	42.7	LOS E	0.0	0.0	0.94	0.94	206.4	212.8	1.03	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Thursday, 11 January 2024 3:54:29 PM

Project: C:\Users\ccfha\OneDrive - TTPP\23344 16 Terry Road, Eastwood\07 Modelling Files\Model\23344-231027.sip9

Site: 2.1139 [PM_Terry Rd / Shaftsbury Rd / Midson Rd (Site Folder: Existing + Dev)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 96 seconds (Site User-Given Phase Times)

Vehicle Movement Performance														
Mov ID	Turn	INF VOLL [Total	PUT JMES HV 1	DEM FLO [Total	AND WS HV 1	Deg. Satn	Aver. Delay	Level of Service	AVERAG OF QI	E BACK UEUE Dist 1	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m			- ,	km/h
South	n: Shat	ftsbury R	oad											
1	L2	148	3	156	2.0	0.198	24.1	LOS B	2.7	19.5	0.65	0.74	0.65	29.5
2	T1	349	1	367	0.3	*0.711	35.1	LOS C	9.8	68.7	0.96	0.84	0.99	23.7
Appro	oach	497	4	523	0.8	0.711	31.9	LOS C	9.8	68.7	0.87	0.81	0.89	25.2
East:	Terry	Road												
4	L2	14	0	15	0.0	0.167	33.6	LOS C	1.9	13.6	0.79	0.65	0.79	25.8
5	T1	268	8	282	3.0	0.732	34.1	LOS C	9.0	64.1	0.92	0.82	0.96	17.1
6	R2	113	1	119	0.9	*0.732	41.5	LOS C	9.0	64.1	0.96	0.88	1.03	14.3
Appro	oach	395	9	416	2.3	0.732	36.2	LOS C	9.0	64.1	0.93	0.83	0.98	16.6
North	: Mids	on Road												
7	L2	78	0	82	0.0	0.420	26.5	LOS B	6.9	48.2	0.75	0.68	0.75	14.2
8	T1	250	0	263	0.0	0.420	20.6	LOS B	6.9	48.2	0.75	0.68	0.75	30.7
9	R2	165	9	174	5.5	* 1.036	113.1	LOS F	8.3	60.7	1.00	1.27	2.13	6.4
Appro	oach	493	9	519	1.8	1.036	52.5	LOS D	8.3	60.7	0.83	0.88	1.21	14.6
West	: Terry	Road												
10	L2	132	0	139	0.0	0.132	14.2	LOS A	1.7	11.8	0.46	0.69	0.46	27.1
11	T1	202	5	213	2.5	0.553	21.4	LOS B	6.1	43.2	0.84	0.75	0.84	22.8
12	R2	85	0	89	0.0	*0.553	26.9	LOS B	6.1	43.2	0.84	0.75	0.84	29.8
Appro	oach	419	5	441	1.2	0.553	20.2	LOS B	6.1	43.2	0.72	0.73	0.72	25.8
All Vehic	les	1804	27	1899	1.5	1.036	35.7	LOS C	9.8	68.7	0.84	0.81	0.96	19.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance														
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.			
	VOI.	FIOW	Delay	Service	[Ped	Dist]	Que	Stop Rate	Time	Dist.	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
South: Shafts	bury Roa	ad												
P1 Full	1	1	42.2	LOS E	0.0	0.0	0.94	0.94	204.9	211.5	1.03			
East: Terry Ro	ad													
P2 Full	8	8	42.2	LOS E	0.0	0.0	0.94	0.94	205.7	212.5	1.03			
North: Midson	Road													
P3 Full	1	1	42.2	LOS E	0.0	0.0	0.94	0.94	206.8	214.0	1.03			

West: Terry Road												
P4 Full	8	8	42.2	LOS E	0.0	0.0	0.94	0.94	206.4	213.5	1.03	
All Pedestrians	18	19	42.2	LOS E	0.0	0.0	0.94	0.94	206.0	213.0	1.03	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Thursday, 11 January 2024 3:54:30 PM

Project: C:\Users\ccfha\OneDrive - TTPP\23344 16 Terry Road, Eastwood\07 Modelling Files\Model\23344-231027.sip9

The Transport Planning Partnership Suite 402 Level 4, 22 Atchison Street St Leonards NSW 2065

> P.O. Box 237 St Leonards NSW 1590

> > 02 8437 7800

info@ttpp.net.au

www.ttpp.net.au